第1章 使用注意事项

使用本控制器前,请仔细阅读本手册后再进行相关的操作,如有疑问请与我司工作人员联系。使用者需具备相关的专业知识和操作技能,确保使用安全。

工作环境及防护

- 1. 控制系统的工作温度为 0-40℃, 当超过此环境温度时系统可能会出现工作不正常甚至死机等现象。
 - 2. 相对湿度应控制在 0-85%
 - 3. 在高温、高压、腐蚀性气体等特殊环境下工作,必须采取特殊的防护措施。
 - 4. 防止灰尘、粉尘、金属等杂物进入控制器。
- 5. 应防护好控制器的液晶屏(易碎品),使其远离尖锐物品;防止空中的物品撞到液晶屏上;当屏幕有灰尘需要清洁时,应用柔软的纸巾或棉布轻轻擦除。

系统的操作

系统操作时需按压相应的操作按键,在按压按键时,需要食指或中指的指肚按压。切记不能用指 甲按压按键,否则将造成按键面膜的损坏,而影响使用。

初次进行操作的操作者,应在了解相应功能的正确使用方法后,方可进行相应的操作,对于不熟 悉的功能或参数,严禁随意操作或更改系统参数。

系统的检修

当系统出现不正常的情况,需检修相应的连接或插座连接处时,应先切断系统电源。再进行必要的检修。

未进行严格操作的技术人员或未得到本公司授权的单位或者个人,不能打开控制系统进行维修操作,否则后果自负。

系统保修说明

保修期:本产品自出厂之日起12个月内

保修范围: 在保修期内, 任何按使用要求操作的情况下发生的故障

保修期内: 保修范围以外的故障为收费服务

保修期外: 所有的故障均为收费服务

以下情况不在保修范围内:

任何违反使用要求的人为故障或意外故障,尤其电压接错接反。

带电插拔系统连接插座而造成的损坏

自然灾害等原因导致的损坏。

未经许可,擅自拆卸、改装、修理等行为造成的损坏。

其他事项:

本说明书如有系统功能不符、不详尽处,以系统软件功能为准。

控制功能改变或完善升级, 恕不另行通知。

第2章 产品型号

我司经过10余年来的发展,推出了TC55系列第二代产品,目前确定产品为M2S,M2B,M2P。图 1为产品型号的详细解释。

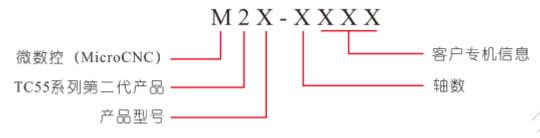


图 1 产品信息解释

特殊说明:

产品型号: P 为专业版, S 为标准版, B 为基础版。

轴数: 1-4。

客户专机信息: 非客户专机时, 后三位为零

第3章 产品简介

微数控 M2B 运动控制器,兼容 TC55 运动控制器的功能,采用 ARM 和专门的运动控制芯片,外部和内部供电采用光耦隔离的方式,实现高性能稳定的控制能力,为自动化应用、机械设备、科学实验带来了实实在在的解决方案。我们经过多年的用户体验和技术更新,目前控制器支持联动和非联动两种运动模式,提供 20 个程序储存,每个程序可编写 999 行。灵活的运动控制,简洁的功能架构,为客户带来新的体验。

- ➤ 功能架构简洁,自动、手动、程序等界面灵活切换
- ➤ 4.3 英寸彩色液晶屏,分辨率 480*272,显示面积 53.9*95 (mm)
- ➤ 手动界面实时显示输入、输出状态
- ➤ 支持开机回机械零,支持手动回机械零
- ➤ 支持 U 盘做媒介导入开机图片、参数、程序文件和组态功能
- ➤ 18路输入,8路输出
- ➤ X, Y, Z, C轴(两轴(含两轴)以上)联动或非联动运动
- ➤ 最大脉冲频率 400K
- ➤ 开机首界面可设置
- ➤ 支持中文和英文选择
- ➤ 支持掉电记忆功能, 断电后坐标显示和工件计数不会清零
- ➤ 限位支持硬限位和软限位
- ➤ 支持多轴回机械零顺序选择
- ➤ 2路 I0 电源方便接线

第4章 面板介绍

产品采用简洁大方的彩色 LCD 显示屏, 4.3 英寸,显示面积为 53.9*95 (mm),界面舒适。38 个轻触按键与界面配合,实现人机交换,信息控制和处理。产品背面与外部接线采用容易接线的插拔大端子,极大的方便了用户。

4.1 按键定义

按键	定义	使用范围	备注
F1 F2 F3 F4 F5 F6	配合液晶屏下方按钮使用, 实现各种功能。	控制器的所有界面	使用率较高的按键。
	为了让同一界面显示更多指 令。	程序编辑界面使用	
自动 手动 程序 参数 IO U盘	进入各大功能界面	控制器在非运行情况 下可以随时使用。	
返回	取消等待手动回机械零状态。程序编辑时,按下此键,进入程序保存,再按下此键,退出保存,进入程序管理。	手动和程序编辑及保 存界面使用。	程序编辑时,有保存和取消保存的意义。
切换	参数、IO 和程序编辑界面选 择状态。	参数、I0 和程序编辑 界面使用。	
删除	用于删除数据。	参数、I0、程序管理 和程序编辑界面使 用。	
确认	保存参数和程序。程序管理 界面,读入程序。	参数、I0、程序管理 和程序保存界面使 用。	
上页下页	用于多个页面向上、向下翻页。速度倍率的增加或减少。	自动、手动、程序、 参数和 I0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	数字键。1,2,3,6键,手动界面,长按可清回参考点。 1-8键,手动界面按下改变输出口1-8状态。7键,手动状态,按下 Z 轴正向运动。 9键,按下 C 轴正向运动。4	手动、参数、I0 和程 序界面使用。	

TOPCNC 多普康微数控

	键,长按工件清零		
	负号。手动状态,按下 Z 轴	参数和程序界面使用	
Z-	反向运动。		
	小数点。手动状态,按下C	参数和程序界面使用	
	轴反向运动。		
	手动状态,按下 X 轴, Y 轴	手动、参数、I0 和程	
	正反运动。其它界面,作为	序使用。	
Y+	光标使用。X+和0复用键,		
	在一些界面用于数字输入,。		. 117

4.2 外观面板尺寸

- ➤ 外形尺寸: 长×宽×厚 206×131×34.7mm
- ➤ 嵌入口尺寸: 长×宽×厚 194×119×4mm

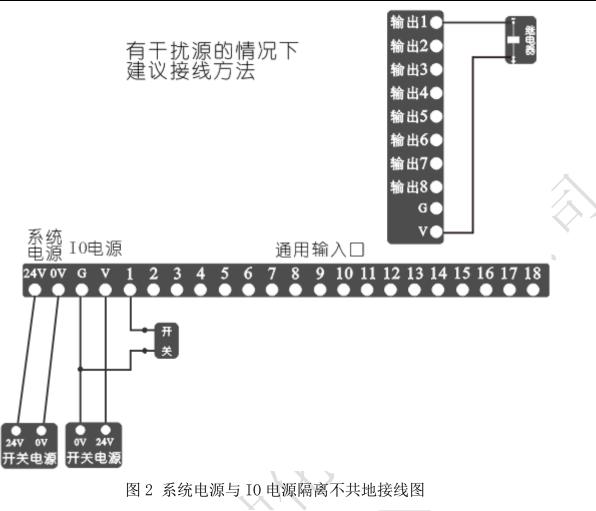
第5章 接口介绍

控制器的接口功能主要分为以下几类:

- ➤ 电源接口
- ➤ U盘接口
- ➤ 驱动器接口
- ➤ 输入接口
- ➤ 输出接口
- ➤ 预留 458 接口

5.1 接口说明

接线端	子名称	定义
系统	24V	系统电源、用于接系统隔离电源 24V 正极。
	OV	系统电源、用于接系统隔离电源 24V 负极。
10	G	IO 电源、用于接输入输出的隔离电源 24V 负极。
电源	V	IO 电源、用于接输入输出的隔离电源 24V 正极。
通	18	输入 18, 经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
用	17	输入 17, 经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
输	16	输入 16,经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
入口	15	输入 15, 经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
1 D	14	输入 14, 经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	13	输入 13, 经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	12	输入 12, 经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	11	输入 11, 经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	10	输入 10,经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	9	输入9,经过开关(机械/光电开关等)接入IO电源24V负极。
	8	输入 8,经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	7	输入 7,经过开关(机械/光电开关等)接入 IO 电源 24V 负极。


		2
	6	输入 6,经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	5	输入 5,经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	4	输入 4,经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	3	输入 3,经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	2	输入 2, 经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
	1	输入 1,经过开关(机械/光电开关等)接入 I0 电源 24V 负极。
485	В	预留接口。
通讯	A	预留接口。
С	D-	系统 C 轴方向负向输出。
С	D+	系统 C 轴方向正向输出。
С	P-	系统 C 轴脉冲负向输出。
С	P+	系统 C 轴脉冲正向输出。
Z	D-	系统 Z 轴方向负向输出。
Z	D+	系统 Z 轴方向正向输出。
Z	P-	系统 Z 轴脉冲负向输出。
Z	P+	系统 Z 轴脉冲正向输出。
Y	D-	系统 Y 轴方向负向输出。
Y	D+	系统 Y 轴方向正向输出。
Y	P-	系统 Y 轴脉冲负向输出。
Y	P+	系统 Y 轴脉冲正向输出。
X	D-	系统 X 轴方向负向输出。
X	D+	系统 X 轴方向正向输出。
X	P-	系统X轴脉冲负向输出。
X	P+	系统 X 轴脉冲正向输出。
输出	1	输出 1,经过感性负载(继电器/电磁阀)接入电源 24V 正极。
输出	2	输出 2, 经过感性负载(继电器/电磁阀)接入电源 24V 正极。
输出	3	输出 3,经过感性负载(继电器/电磁阀)接入电源 24V 正极。
输出	4	输出 4, 经过感性负载(继电器/电磁阀)接入电源 24V 正极。
输出	5	输出 5, 经过感性负载(继电器/电磁阀)接入电源 24V 正极。
输出	6	输出 6,经过感性负载(继电器/电磁阀)接入电源 24V 正极。
输出	7	输出7,经过感性负载(继电器/电磁阀)接入电源24V正极。
输出	8	输出 8,经过感性负载(继电器/电磁阀)接入电源 24V 正极。
I	G	IO 电源、用于接输入输出的隔离电源 24V 负极。
0	V	IO 电源、用于接输入输出的隔离电源 24V 正极。
72		

5.2 电源接口

控制器的供电电源采用系统供电和 I0 供电两种方式,都接 24V 开关电源。当需要使用输入、输出功能时,需要 I0 供电。系统供电和 I0 供电建议采用隔离不共地的两个开关电源。本控制器有两路 I0 电源,两路 I0 电源相通,任意一路 I0 电源接 24V 开关电源都可以。接线图可参照图 2 所示。

5.3 输入和输出

控制器拥有 18 路输入, 8 路输出。基本上满足大部分用户的需求,如需更多功能,请联系客服进行定制服务。输入口接入开关与 I0 设置中的参数配合实现功能。输出接感性负载,如继电器、电磁阀等。接线方式如图 2,图 3 所示。

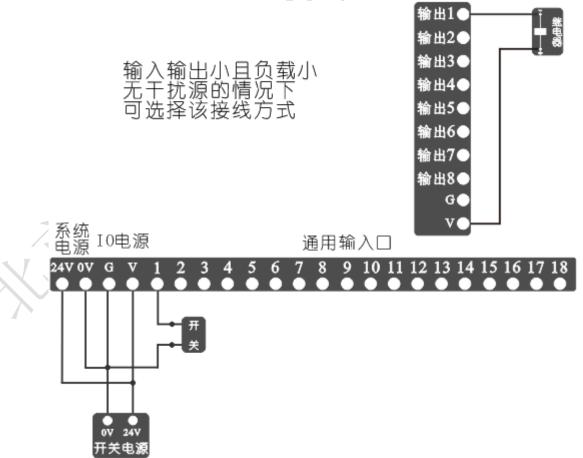


图 3 系统电源与 IO 电源非隔离接线图

5.4 差分脉冲输出-驱动器接口

控制器最多提供 4 路差分脉冲输出,驱动步进电机或伺服电机,四轴控制器分别为 X 轴、Y 轴、Z 轴、C 轴。4 路差分脉冲输出口与驱动器连接方式一样。如图 4 所示。

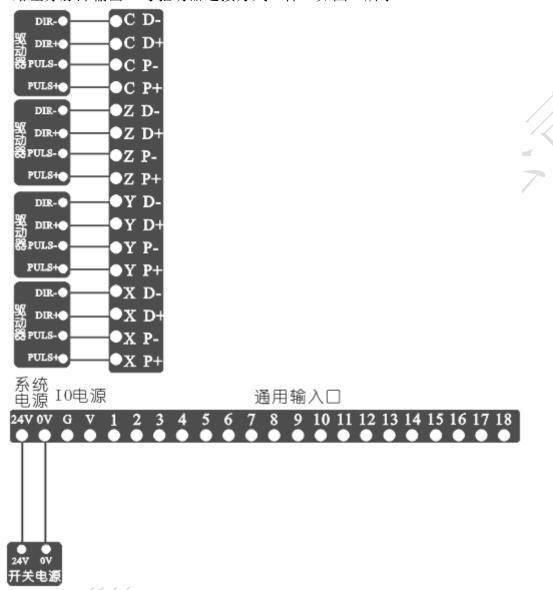


图 4 控制器差分脉冲输出口与控制器的接线方式

第6章 功能介绍

4.3 英寸彩色显示屏用于人机信息交换,与面板上的按键或外部按钮配合使用实现功能。

6.1 开机界面

控制器电源接通,4.3 英寸彩色显示屏亮起,首先显示开机界面,开机界面出厂默认如图 5 所示,带有本司的 LOGO。开机界面显示图片用户可随意设置,通过 U 盘将格式合适的图片导入控制器中,图片格式和 U 盘导入方式下面将会介绍。

在开机界面停留一定时间,将自动进入下一界面。控制器默认进入手动界面。用户也可以通过参数设置选择进入手动还是自动界面。

图 5 开机界面

6.2 手动操作

手动操作,手动状态下对控制器各轴及输入输出进行操作。界面提供了控制器工作时所需的基本信息,与面板上的按键和外部按钮配合实现手动操作。界面如果6所示。

手动排	操作					
X	0.	000	F	0	100%	
Y	0.	000	Р	0		
Z	0.	000	T	0		
С	0.	000	工化	件计数	0	
		36 0 8			6000	0
长按[4]工	件清零,长持	安[1/2/3/6]名	轴清除坐	标		
手动高速	手动增量	程序回零	输出	示教编程	机械回零	Þ

图 6 手动操作

- ➤ 界面实时显示坐标轴的具体位置,断电,重新上电,坐标值不清零。有坐标清零提示语的状态下,长按"1", X轴清回参考点,长按"2", Y轴清回参考点,长按"3", Z轴清回参考点,长按"6", C轴清回参考点。
 - ➤ 界面实时显示当前的进给轴速度 F, 为进给轴的合成速度。
- ➤ 显示进给轴速度倍率,调节进给轴运行速度的百分比。进给轴在手动或者自动情况下,实际运行的速度=系统设置的速度×进给速度倍率,取值范围为 10%-200%。按"上页"键一下,速度倍率加 1, 长按速度倍率加 10%;按"下页"键一下,速度倍率减 1%,长按速度倍率减 10%。
 - ➤ 显示剩余的循环次数 P,与循环指令相关,用于自动执行中
 - ➤ 显示剩余的延时时间 T,与延时指令相关,用于自动执行中
- ➤ 工件计数,显示当前加工的工件数量。与工件计数、工件置数指令相关,用于自动执行中。 长按 "4"键,工件清零。
 - ➤ 在界面下部出现提示语,提示当前如何操作
 - ➤ 显示输入、输出通断状态

6.2.1 手动高速

按面板上的 "F1"键,选中"手动高速",再按"X+"键,X轴正转,按"X-"键,X轴反转,按 "Y+"键,Y轴正转,按 "Z+"键,Z轴正转,按 "Z-"键,Z反转,按 "C+"键,C轴正转,按 "C-"键,C轴反转。运行速度在参数-速度参数,〈手动高速〉参数项中设置。

6.2.2 手动低速

在 6. 2. 1 的状态下,再按 "F1"键,取消选中。再按 "X+"键,X 轴正转,按 "X-"键,X 轴反转,按 "Y+"键,Y 轴正转,按 "Z+"键,Z 轴正转,按 "Z-"键,Z 反转,按 "C+"键,C 轴正转,按 "C-"键,C 轴反转。运行速度在参数-速度参数,〈手动高速〉参数项中设置。

6.2.3 手动增量

按"F2"键,选中"手动增量",进给轴将以设定值为步长,按一次方向键,运动一次。再按"F2"键,取消选中,然后长按方向键,将连续运动。手动增量的步长在参数-控制参数,〈点动增量〉参数项中设置,手动增量的速度在参数-速度参数,〈点位速度〉参数项中设置。

6.2.4 程序回零

按"F3"键,选中"程序回零",1-4轴将以最高速度同时回到程序零点,最高速度在参数-速度参数,〈合成高速〉参数项设置。再按一次"F3",取消选中。

6.2.5 输出

按 "F4"键,选中"输出",再按 "1-8"数字键,控制 1-8 输出口的通断状态,再按 "F4"键,取消选中。

6.2.6 示教编程

按 "F5"键,进入"示教编程"界面,如图 7 所示。

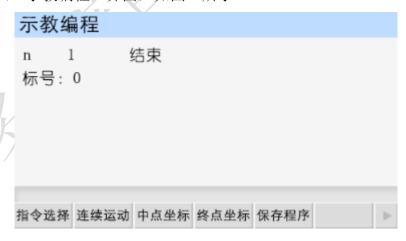


图 7 示教编程

(1) 示教按钮介绍:

➤ "指令选择"用来选择"快速运动""绝对运动""相对运动""顺圆 IJ""逆圆 IJ" 五条指令。

- ➤ "连续运动"与"点动运动"相互切换。
- ▶ "中点坐标"保存需要运动的圆弧上第二个点。

- ➤ "终点坐标"保存需要运动的圆弧上第三个点。
- ➤ "保存程序"进入保存程序。
- (2) 示教编程方式:

首先,通过"指令选择"来选择需要的指令;

其次,按"X+"键, "X-"键, "Y-"键, "Y-"键, "Z-"键, "Z-"键, "C-"键, "C-"键寻找需要的坐标点:

第三,按"下页"进入到下一条;

第四, 重复前三步骤, 直到程序编辑完成。

最后,按 "F5"键,输入新程序文件名 1-4 位数字,按 "确认"键,保存程序。

(3) 特别说明

- "快速运动""相对运动"走的是增量值。
- "绝对运动"走绝对坐标。
- "顺圆 IJ""逆圆 IJ"走相对坐标。

(4) 举例

按 "F1" 键找到 "顺圆 IJ" 指令,圆弧的第一个点默认,假如这时当前 X 轴,Y 轴的坐标位置为 (0,0),然后按 "X+" 走 2。按 "Y+" 走 2,这时,按 "F3"键,记忆圆弧的中点(2,2)。然后再按 "X+"走 4,按 "Y-"走到 0,按 "F4"键,记忆圆弧终点坐标(4,0)。编辑完成按 "F5"键,保存程序。以上程序会加工出一个圆心在(2,0),半径等于 2 的一个半圆。

6.2.7 机械回零

按 "F6"键,选中"机械回零",再按某个轴的方向键,执行回机械零动作。按"返回"或者"暂停"键,取消选中。

6.3 自动执行

按面板上的"自动"键,进入自动执行界面,该界面执行的程序为程序管理中保存的程序,如图 8 所示。按"启动"键,程序运行,运行的程序为最后一次在程序管理中读入的程序。按"暂停"键有效。

- ▶ 直接显示当前加载的程序文件名和程序行。
- ➤ 显示当前执行到的程序行。
- ➤ 其它显示与手动操作界面一样,解释见手动操作界面。

6.3.1 单步执行

程序是由一个个程序行组成的。按 "F1"键,选中"单步执行",按一次"启动"键,执行一个程序行。单步执行就是为了检测编写的程序,运动状态是否正确。

6.3.2 连续执行

在"单步执行"状态下,再按一次"F1"键,取消"单步执行",这时按"启动"键,程序连续执行,到最后程序行。

6.3.3 暂停程序

程序运行时,按下"暂停"键,程序运行暂停,再按"启动"键,程序接着执行。

6.3.4 终止程序

程序运行时,按下 "F2"键,程序运行终止,并跳到程序第一行。再按 "启动"键,程序从第一行开始执行。

图 8 自动执行

6.4 参数设置

按面板上的"参数"键进入参数设置界面,默认进入控制参数界面,如图 9 所示。

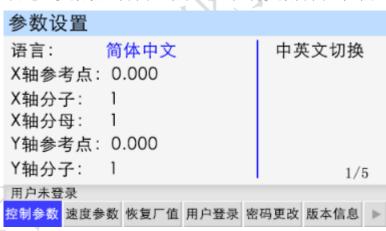


图 9 控制参数

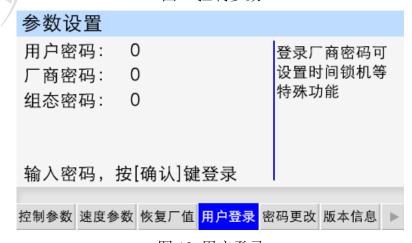


图 10 用户登录

6.4.1 用户登录

保持在参数设置界面,按"F4"键,进入用户登录界面。参数修改,打开 U 盘文件都需先登录用户。用户登录界面如图 10 所示。

用户密码: 登录用户密码,设置用户级使用参数,默认出厂密码为: 123456。

厂商密码: 登录厂商密码,设置厂商级使用功能,时间锁机功能,厂商密码暂不告知用户。

组态密码: 登录组态密码,设置、使用组态功能,默认组态出厂密码为: 12345609。组态功能具体使用方法下面将会介绍。

输入密码后。按"确认"键登录。

6.4.2 控制参数

登录用户后,按"F1"键,进入控制参数界面。下表列出控制参数界面所有的参数。设置完成后,根据提示,按"确认"键保存。

似%证外,按 %	用以	
参数	功能说明	操作
语言	控制器支持两种语言,中文和英文	按"切换"键选择
X 轴参考点	手动状态下,长按数字"1"键,X轴坐标清空并显示此	输入数字
	设定值。	
X 轴分子	X轴电子齿轮分子,如何使用见附录。	输入数字
X 轴分母	X轴电子齿轮分母,如何使用见附录。	输入数字
Y轴参考点	手动状态下,长按数字"2"键,Y轴坐标清空并显示此	输入数字
	设定值。	
Y轴分子	Y轴电子齿轮分子,如何使用见附录。	输入数字
Y轴分母	Y轴电子齿轮分母,如何使用见附录。	输入数字
Z轴参考点	手动状态下,长按数字"3"键,Z轴坐标清空并显示此	输入数字
	设定值。	
Z轴分子	Z 轴电子齿轮分子,如何使用见附录。	输入数字
Z轴分母	Z 轴电子齿轮分母,如何使用见附录。	输入数字
C轴参考点	手动状态下,长按数字"6"键,C轴坐标清空并显示此	输入数字
<i>J</i> -	设定值。	
C 轴分子	C 轴电子齿轮分子,如何使用见附录。	输入数字
C轴分母	C 轴电子齿轮分母,如何使用见附录。	输入数字
升速时间	电机以启动速度运行经过设定的升速时间。运行到设定	输入数字
	的F速度。	
点动增量	手动点动状态,按一次方向键,运行的步长。	输入数字
X 轴间隙	X 轴反向间隙值(根据设备实际测量获得)	输入数字
Y轴间隙	Y 轴反向间隙值(根据设备实际测量获得)	输入数字
Z轴间隙	Z 轴反向间隙值(根据设备实际测量获得)	输入数字
C轴间隙	C 轴反向间隙值(根据设备实际测量获得)	输入数字
X 零开机启动	决定X轴是否在系统开机后优先运行回机械零动作。	按"切换"键选择
Y零开机启动	决定Y轴是否在系统开机后优先运行回机械零动作。	按"切换"键选择

TOPCNC 多普康微数控

Z零开机启动	决定 Z 轴是否在系统开机后优先运行回机械零动作。	按"切换"键选择
C零开机启动	决定C轴是否在系统开机后优先运行回机械零动作。	按"切换"键选择
开机首界面	设置开机后自动进入的界面。	按"切换"键选择
软限位	有效时,运动中的坐标不能超过其限定值。	输入数字
开机回零顺序	开机启动有效后,各轴按照设定好的顺序依次回机械零。	按"切换"键选择

6.4.3 速度参数

按面板上的"F2"键,进入速度参数界面,在该界面设置速度,软限位坐标及组态有效是否等。下表列出速度参数界面所有参数。有些参数需要登录特定的用户密码才能正常显示并设置。设置完成后,根据提示,按"确认"键保存。

参数	功能说明	操作	登录密码功能有效是否
合成高速	1-4 轴合成最高限速,系统运	数字输入	所有用户密码通用。
	行时, 1-4 轴合成速度都不得		
	超过此速度。		
启动速度	电机启动时,会以此速度运	数字输入	所有用户密码通用。
	行,在升速时间内运行至程序		
	设定中的F值速度。		
手动高速	手动高速时的速度。	数字输入	所有用户密码通用。
手动低速	手动低速时的速度。	数字输入	所有用户密码通用。
点位速度	手动增量时的速度	数字输入	所有用户密码通用。
回零高速	回机械零时,首先以回零高速	数字输入	所有用户密码通用。
	运行。		
回零低速	回机械零过程中, 碰到开关	数字输入	所有用户密码通用。
	后,以回零低速运行。		
回零模式	回机械零的两种方式,经过开	按"切换"键选	所有用户密码通用。
	关,不过开关	择	
X 正限坐标	设定X轴正向限位坐标。	输入数字	所有用户密码通用。
X 负限坐标	设定X轴负向限位坐标。	输入数字	所有用户密码通用。
Y正限坐标	设定Y轴正向限位坐标。	输入数字	所有用户密码通用。
Y负限坐标	设定Y轴负向限位坐标。	输入数字	所有用户密码通用。
Z正限坐标	设定Z轴正向限位坐标。	输入数字	所有用户密码通用。
Z负限坐标	设定 Z 轴负向限位坐标。	输入数字	所有用户密码通用,
组态功能	有效时,启动组态功能。	按"切换"键选	登录组态密码。
		择。	
时间锁机	有效时,设置开启时间锁机。	按"切换"键选	登录厂商密码。
		择。	

6.4.4 恢复厂值

按 "F3"键,进入恢复厂值界面,在该界面,根据提示,按 "确认"键,等待一段时间,将参数和 I0 恢复至出厂数据。

6.4.5 密码更改

按 "F5"键,进入密码更改界面,按提示输入新密码,按 "光标上"键或 "光标下"键换行。"上页"键或者 "下页"键换页,修改其它功能密码。

6.4.6 版本信息

按 "F6"键, 查看控制器软件或硬件版本。不同批次的产品软件或硬件版本号可能存在差别。

6.510 设置

按面板上的"I0"键,进入I0设置界面,默认进入系统参数界面,如图11所示。I0设置是对控制器输入、输出功能进行设置。设置I0参数需先登录用户。然后按光标键移动,"切换"键选择,"确认"键保存。

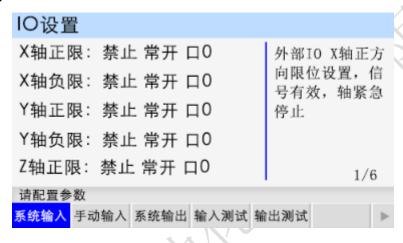


图 11 系统输入

6.5.1 系统输入

该界面包含控制器限位、报警、急停和外部启动等输入功能设置。

参数	功能说明	操作
X轴正限	设置限制X轴向正方向运动检测信号。	输入数字;按"切换"键选择
X轴负限	设置限制X轴向负方向运动检测信号。	输入信号;按"切换"键选择
Y轴正限	设置限制Y轴向正方向运动检测信号。	输入信号;按"切换"键选择
Y轴负限	设置限制Y轴向负方向运动检测信号。	输入信号,按"切换"键选择
Z轴正限	设置限制 Z 轴向正方向运动检测信号。	输入数字;按"切换"键选择
Z轴负限	设置限制 Z 轴向负方向运动检测信号。	输入信号;按"切换"键选择
C轴正限	设置限制C轴向正方向运动检测信号。	输入信号;按"切换"键选择
C轴负限	设置限制C轴向负方向运动检测信号。	输入信号,按"切换"键选择
报警输入	设置外设报警开关输入口。	输入数字;按"切换"键选择
急停输入	设置外设急停开关输入口。	输入信号;按"切换"键选择
X轴零点	X轴机械零点检测输入信号。	输入信号;按"切换"键选择
Y轴零点	Y轴机械零点检测输入信号。	输入信号,按"切换"键选择
Z轴零点	Z轴机械零点检测输入信号。	输入数字;按"切换"键选择
C轴零点	C轴机械零点检测输入信号。	输入信号;按"切换"键选择
外部启动	外部开关启动程序。	输入信号;按"切换"键选择

TOPCNC 多普康微数控

外部暂停	外部开关暂停运动状态。	输入信号,按"切换"键选择
升速输入	外部开关控制速度倍率加。	输入数字;按"切换"键选择
降速输入	外部开关控制速度倍率减。	输入信号;按"切换"键选择
输出口1	外部开关控制输出口1通断状态。	输入信号;按"切换"键选择
输出口2	外部开关控制输出口2通断状态。	输入信号,按"切换"键选择
输出口3	外部开关控制输出口3通断状态。	输入数字;按"切换"键选择
输出口4	外部开关控制输出口4通断状态。	输入信号;按"切换"键选择
输出口 5	外部开关控制输出口5通断状态。	输入信号;按"切换"键选择
输出口6	外部开关控制输出口6通断状态。	输入信号,按"切换"键选择
输出口7	外部开关控制输出口7通断状态。	输入信号;按"切换"键选择
输出口8	外部开关控制输出口8通断状态。	输入信号;按"切换"键选择
清坐标零	外部开关按下,将当前坐标设为参考点。	输入信号,按"切换"键选择

6.5.2 手动输入

按 "F2" 键进入手动输入界面。该界面设置外部开关进行手动操作时的参数。

参数	功能说明	操作
X 高速+	设置外部开关控制X轴手动高速正转输入信号。	输入数字;按"切换"键选择
X高速-	设置外部开关控制X轴手动高速反转输入信号。	输入信号;按"切换"键选择
X 低速+	设置外部开关控制X轴手动低速正转输入信号。	输入信号;按"切换"键选择
X 低速-	设置外部开关控制X轴手动低速反转输入信号。	输入信号,按"切换"键选择
Y 高速+	设置外部开关控制Y轴手动高速正转输入信号。	输入数字;按"切换"键选择
Y 高速-	设置外部开关控制Y轴手动高速反转输入信号。	输入信号;按"切换"键选择
Y 低速+	设置外部开关控制Y轴手动低速正转输入信号。	输入信号;按"切换"键选择
Y 低速-	设置外部开关控制Y轴手动低速反转输入信号。	输入信号,按"切换"键选择
Z 高速+	设置外部开关控制Z轴手动高速正转输入信号。	输入数字;按"切换"键选择
Z 高速-	设置外部开关控制Z轴手动高速反转输入信号。	输入信号;按"切换"键选择
Z 低速+	设置外部开关控制Z轴手动低速正转输入信号。	输入信号;按"切换"键选择
Z 低速-	设置外部开关控制Z轴手动低速反转输入信号。	输入信号,按"切换"键选择
C 高速+	设置外部开关控制С轴手动高速正转输入信号。	输入数字;按"切换"键选择
C 高速-	设置外部开关控制C轴手动高速反转输入信号。	输入信号;按"切换"键选择
C 低速+	设置外部开关控制С轴手动低速正转输入信号。	输入信号;按"切换"键选择
C 低速-	设置外部开关控制С轴手动低速反转输入信号。	输入信号,按"切换"键选择
X零启动	设置X轴手动回机械零输入信号。	输入数字;按"切换"键选择
Y零启动	设置Y轴手动回机械零输入信号。	输入信号;按"切换"键选择
Z零启动	设置 Z 轴手动回机械零输入信号。	输入信号;按"切换"键选择
C零启动	设置C轴手动回机械零输入信号。	输入信号,按"切换"键选择
回程序零	设置启动 1-4 轴同时回程序零输入信号。	输入数字;按"切换"键选择

6.5.3 系统输出

按"F3"键,进入系统输出,在该界面设置程序运行过程中,按"暂停"键,输出口的状态。

参数	功能说明	操作
2 M	->4 110 60 >4	1/611

TOPCNC 多普康微数控

输出 01	设置程序自动运行,按"暂停"输出口1的状态。	按"切换"键选择
输出 02	设置程序自动运行,按"暂停"输出口2的状态。	按"切换"键选择
输出 03	设置程序自动运行,按"暂停"输出口3的状态。	按"切换"键选择
输出 04	设置程序自动运行,按"暂停"输出口4的状态。	按"切换"键选择
输出 05	设置程序自动运行,按"暂停"输出口5的状态。	按"切换"键选择
输出 06	设置程序自动运行,按"暂停"输出口6的状态。	按"切换"键选择
输出 07	设置程序自动运行,按"暂停"输出口7的状态。	按"切换"键选择
输出 08	设置程序自动运行,按"暂停"输出口8的状态。	按"切换"键选择

6.5.4 输入测试

按"F4"键,在该界面测试输入口 1-18 信号是否正常。数字序号 01-18 分别对应输入口 1-18,输入口与 I0 电源 24V 地短接时,对应位置变为"通"。为了提高输入信号的可靠性,系统具有干扰过滤功能,信号需要保持 2 毫秒以上。

没有变化时。可能出现以下情况:

I0 电源没有接入 24V。

该输入信号线连接不正常。

该路输入信号电路出现故障。

6.5.5 输出测试

按"F5"键,在该界面测试输出口 1-8 信号是否正常。数字序号 01-08 分别对应输出口 1-8,按 光标键选中输出口,"切换"键选择输出口状态,当"通"时,输出口和 I0 电源正极有 24V 的电压, 当"断"时,输出口和 I0 电源之间电压为零。当输出口没有根据界面状态显示电压变化时,可能 为如下情况:

I0 电压没有接入 24V。

该输出信号线连接不正常。

该路输出信号电路出现故障。

6.5.6 时间锁机

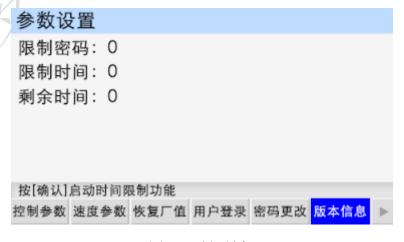


图 12 时间锁机

时间锁机就是控制器到达设定使用的时间,停止工作,需输入锁机密码才能正常开机。

登录厂商密码,参数设置-速度参数中将多出一项功能:时间锁机。按"切换"键选择"有效",按"确认"键保存。再按"F6"键,在版本信息界面按"切换"键,界面显示如图 12 所示。移动光标,输入限制密码和限制时间。按"确认"键启动时间限制功能。重启,时间锁机功能生效。

第7章 U盘

控制器提供了1路插入U盘接口,U盘作为PC机上位机软件和控制器的媒介,将在上位机软件中设置的参数、工程、程序和开机图片导入控制器中。

将 U 盘插入控制器中, 登录用户, 按 "U"盘, 界面显示如图 13 所示。

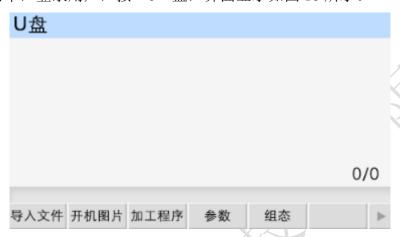


图 13 U 盘

7.1 开机图片

按"F2"键,打开U盘中的图片,按光标键上下移动光标,选中开机图片,再按"F1"键,等待一会儿,将图片完全导入控制器。此图片作为控制器上电后的开机界面。

图片要求:分辨率 480*272; 24 位色,文件尾缀以. BMP 命名。

7.2 加工程序

按"F3"键,打开U盘中的程序,按光标键上下移动光标,选中程序,再按"F1"键,等待一会,将程序导入控制器。此程序在程序管理以9001起始命名。作为自动执行运行的程序。

7.3 参数

按"F4"键,打开U盘中的设备参数,再按"F1"键,将设备参数加载到控制器中。设备参数为 I0设置和参数设置中的参数。

7.4 组态

按"F5"键,打开 U 盘中的组态,再按"F1"键,将组态功能导入控制器中。(不需要移动光标,按一下"F1"键,能将 U 盘中所有与组态功能相关的全部导入控制器中)

第8章 程序管理

程序管理中存放着自动执行中运行的程序。按"程序"键,界面显示如图 14 所示。

8.1 文件列表

此列表显示控制器保存的所有程序,按光标键移动光标,选中程序,进行程序的编辑、修改、读

入、删除等操作。控制系统最多可存20个程序文件。每个程序文件最多可存999个程序行。

8.2 程序文件删除

在程序管理界面,按光标键移动光标,选中文件,按"删除"键,出现提示语"如果决定删除文

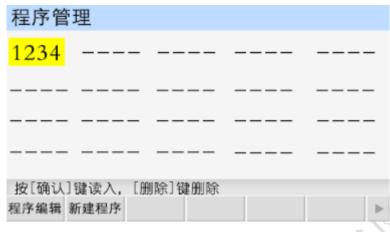


图 14 程序管理

件,再按[删除]键,慎用!",再按一次"删除"键,能将程序文件彻底删除。

8.3 程序编辑

按 "F1"键,读入程序文件,可在此基础上进行程序指令的编辑、删除等操作。如图 15 所示, 为控制器默认程序。

程序编辑		文件: 1234
n 1 标号:0	绝对运动 X: 0.000	Y: 0.000
1がつ・0	Λ. 0.000	1. 0.000
	Z: 0.000	C: 0.000
	F: 0.000	
相对运动 绝对运动	勃 暂停 输出	循环 插行 ▶
<i>'</i> \ / / \		

图 15 程序编辑

上页:从当前程序行翻到上一程序行。

下页:从当前程序行翻到下一程序行。长按"下页"时,弹出窗口,输入数字,按"确认",快速跳到输入的程序行。

拓展: 查找更多的指令。

删除:短按"删除"键,删除当前程序行光标所在的数据。长按"删除"键,删除当前的程序行。切换:用于回机械零选轴,选择输入、输出状态及工件计数方向。

为了便于使用,本控制器采用汉字或英文命令选择方式。通过屏幕下方的 F1-F6 及拓展按键选择指令,按光标键移动光标,修改数据。修改完毕,按"下页"键,换新的指令行,重复以上操作直到加工动作编写完成。

8.4 新建程序

按 "F2"键,新建程序文件,默认所有指令都是结束。

8.5 保存程序

程序编辑完毕,按"返回"键,保存程序界面,如图 16 所示。

程序文件名:程序名可以由1至4位数的任意数字组成。

输入文件名,按"确认"键保存文件,按"返回"键,取消保存。

程序管理

请输入程序文件名: 1234 和已有文件重名时保存 和已有文件不同时另存

按[确认]键保存文件!按[返回]键取消程序编辑 新建程序

图 16 保存程序界面

第9章 程序指令

单轴控制器包含 25 个指令,多轴控制器包含 29 个指令,为了方便用户,我们在每页屏幕下部指令按钮处都设有插行按钮,方便用户随时插入新的程序行。

9.1 结束

n 1 结束

标号: 0

参数:无

9.2 相对运动

直线插补,走相对坐标,沿直线以F速度×倍率运动,此运动受速度倍率的影响,与当前F速度直接相关(注:凡是与速度F相关的指令,都受速度倍率影响)。

n 1 相对运动

标号: 0

X:

0.000

Y:

0.000

Z: F: 0.000

C:

0.000

参数: X(X 向运动增量), Y(Y 向运动增量), Z(Z 向运动增量), C(C 向运动增量), F(运动速度) 9.3 绝对运动

直线插补,走绝对坐标,沿直线以F速度×速度倍率从当前点运动。此运动受速度倍率的影响,与当前F速度直接相关。

n 1

绝对运动

标号: 0

X: 0.000

0.000

Y:

0.000

Z:

C:

0.000

F: (

参数: X(X向绝对坐标), Y(Y向绝对坐标), Z(Z向绝对坐标), C(C向绝对坐标), F(运动速度)

9.4 暂停

执行到该指令时,通过检测设定的输入口状态进行暂停判断,符合条件暂停在当前状态,不符合 条件时,跳转到与目的行号一致的行号处,如果目的行号为 0,则自动往下一行执行。

n 1 暂停

标号: 0 输入□号: 0 条件: 断

目的行号: 0

参数:输入口号(控制器输入口 1-18),条件(用来进行判断对比的条件,某个输出口通或断,按"切换"键选择),目的行号(检测条件不符合时,程序跳转至于行号相同的程序行处,如果此处填写为 0,则自动向下一行执行)

9.5 输出

设置输出口的状态。

n 1 输出

标号:0 输出□号:0 0 0

状态: 断

参数:输出口号(控制器输出口1-8,任意5个),状态(通或者断,通过"切换"键选择)

9.6 循环

当程序执行到此处,转移到制定的标号处执行,再执行 N 次。注意: 需循环的程序段第一条指令填写标号,循环指令前一条指令是循环程序段的最后一条指令。

n l 循环 标号: 0 循环次数: 0

首的标号: 0

参数:循环次数(需要再循环的次数),目的标号(跳转到标号相同的指令(非行号)处)

9.7 顺圆运动

刀具以F的进给速度从圆弧起点到终点的顺时针插补,X,Y圆弧终点是相对圆弧起点的增量值,此种编程方式不支持整圆,实现此指令,X,Y,R 需满足: $\sqrt{X^2+Y^2} \leq 2R$,不满足条件指令不执行。

n 1 顺圆运动 标号: 0 X: 0.000 Y: 0.000

R: 0.000 F: 0

参数: X(X向运动增量), Y(Y向运动增量), R(圆弧半径。圆弧为优弧,即大于0度小于等于180度的圆弧时,R值为正值;圆弧为劣弧,即大于180度且小于360度的圆弧时,R为负值),F(运动速度)

9.8 逆圆运动

刀具以F的进给速度从圆弧起点到终点的逆时针插补,X,Y圆弧终点是相对圆弧起点的增量值,此种编程方式不支持整圆,实现此指令,X,Y,R 需满足: $\sqrt{X^2+Y^2} \leq 2R$,不满足条件指令不执行。

n 1 逆圆运动

标号: 0 X: 0.000 Y: 0.000 R: 0.000 F: 0

参数: X(X向运动增量),Y(Y向运动增量),R(圆弧半径。圆弧为优弧,即大于0度小于等于180度的圆弧时,R值为正值;圆弧为劣弧,即大于180度且小于360度的圆弧时,R为负值),F(运动速度)

9.9 延时

延时相应时间,最小单位是0.001秒。

n 1 延时

标号: 0 延时时间: 0.000

参数:延时时间(填写需要延时等待的时间)

9.10 判断跳转

执行到本行时,检测本行设定输入口的状态进行判断,符合条件跳转到制定标号(非行号)位置,不符合条件自动执行下一行指令。

n 1 判断跳转

标号: 0 输入口号: 0 条件: 断

目的标号: 0

参数:输入口号(控制器输入口 1-18),条件(用作判断的条件通或者断,按"切换"键选择通或断),目的标号(跳转到标号相同的指令(非行号)处)

9.11 绝对跳转

执行到本行时跳转到制定标号(非行号)处。

n 1 绝对跳转

标号: 0 目的标号: 0

参数:目的标号(跳转到标号相同的指令(非行号)处)

9.12 快速运动

本指令可实现快速直线插补到指定位置,当有位移时,系统以最高速度×速度倍率从当前点运动到所给的相对坐标位置。此运动受到速度倍率的影响。

n 1 快速运动

标号: 0 X: 0.000 Y: 0.000 Z: 0.000 C: 0.000

参数: X(X向相对坐标), Y(Y向相对坐标), Z(Z向相对坐标), C(C向相对坐标)

9.13 回机械零

根据设定的轴与回零方向进行回机械零动作

n 1 回机械零

标号: 0 选定的轴: 0 回零方向: 负

参数: 选定的轴(单轴默认为 X, 多轴 X/Y/Z/C 按"切换"键选择), 回零方向(回零方向按"切换"键选择)

9.14 速度模式

速度模式,可以让各轴以不同的速度同时运行,没有指定具体的位置值,通过输入口的状态与条件进行判断,然后选择停止,并执行下一行。

n 1 速度模式

标号: 0 X: 0 Y: 0 Z: 0 C: 0

输入□号: 0 停止条件: 断

参数: X(X 轴速度), Y(Y 轴速度), Z(Z 轴速度), C(C 轴速度), 输入口(进行判断的输入口 1-18), 条件(用作判断的输入口状态,用"切换"键选择状态通或断)

9.15 工件置数

执行该指令时,自动界面和手动界面上的工件计数会清空原有数据,显示成该设定值,该指令与 工件计数配合使用。

n 1 工件置数

标号: 0 设定的值: 0

参数:设定的值(用于加工时的起始工件数量)

9.16 工件计数

执行一次该指令时,自动界面和手动界面上工件计数位置的数据会选择加1或者减1。

n 1 工件计数

标号: 0 计数方向: 减

参数: 计数方向(执行时通过程序中设定加或者减,来对当前工件数目进行加或者减,运动到该指令执行一次,数据就加或者减1次,计数方向按"切换"键选择)

9.17 子程调用

调用子程序指令,子程序内容放在主程序后面,并且需要用结束指令分开。

n 1 子程调用

标号: 0 子程序名: 0

参数: 子程序名(调用设定好名字的子程序)

9.18 子程开始

主程序在调用子程序时,结束指令后面需要编写子程序的内容,子程序的开头和结尾需要两个单独的指令组合,该指令为子程序内容的开头,然后后面编写需要执行的子程序动作。

n 1 子程开始

标号: 0 子程序名: 0

参数: 子程序名(用来被选择调用而设置的名字)

9.19 子程结束

主程序调用子程序时,结束指令后面需要编写子程序的内容,子程序的头尾需要两个单独的指令组合,此指令为子程序内容的结尾,在编写完需要执行的子程序动作后,加上该指令,来组成一段完整的子程序。

n 1 子程结束

标号: 0

参数:无

注: 子程序编写的时候头尾指令必须存在, 否则无效

9.20 设定坐标

设定当前位置为新坐标点。

n 1 设定坐标

标号: 0 X: 0.000 Y: 0.000 Z: 0.000 C: 0.000

参数: X(X 轴的坐标), Y(Y 轴的坐标), Z(Z 轴的坐标), C(C 轴的坐标)

9.21 顺圆 IJ

刀具在 X, Y 坐标平面上以一定的进给速度进行圆弧插补,从当前位置(圆弧的起点),沿圆弧移动到指令给出的目标位置,切削出圆弧轮廓。顺时针圆弧插补叫做顺圆 IJ。顺圆 IJ 编程方式可以画整圆。

n 1 顺圆IJ

标号: 0 X: 0.000 Y: 0.000 I: 0.000 J: 0.000 F: 0

参数: X,Y(X,Y) 是圆弧终点相对于起点的坐标),I,J(圆心到圆弧起点的矢量值),F(圆弧插补时的进给速度)

9.22 逆圆 IJ

刀具在 X, Y 坐标平面上以一定的进给速度进行圆弧插补,从当前位置(圆弧的起点),沿圆弧移动到指令给出的目标位置,切削出圆弧轮廓。逆时针圆弧插补叫做逆圆 IJ。逆圆 IJ 编程方式可以画整圆。

n 1 逆圆IJ

标号: 0 X: 0.000 Y: 0.000 I: 0.000 J: 0.000 F: 0

参数: X,Y(X,Y) 是圆弧终点相对于起点的坐标),I,J(圆心到圆弧起点的矢量值),F(圆弧插补时的进给速度)

9.23 连续模式

当连续模式有效时,从此指令往后,相临的两条指令运动轨迹都是直线,从前一指令执行到后一

指令不需要降速(注:一个连续模式只能连续10条运动指令);当连续模式无效时,从此指令往后,相邻的两条指令运动轨迹都是直线,从前一指令执行到后一指令必须经过降速过程。

n l 连续模式

标号: 0 设置状态: 禁止

参数:设置状态(通过"切换"键设置禁止或有效状态)

9.24 非联动速度

各轴以设定的速度运行一直运行。与非联动急停、非联动缓停配合使用。

n 1 非联动速度

标号: 0 Fx: 0 Fy: 0

Fz: 0 Fc: 0

参数: Fx(设置 X 轴运行的速度), Fy(设置 Y 轴运行的速度), Fz(设置 Z 轴运行的速度), Fc(设置 C 轴运行的速度)

9.25 非联动相对

设定任意轴以任何速度运行任意距离。

n_1 非联动相对

标号: 0 轴: X

距离:0.000 F.**0**

参数: 轴(按"切换"键选择轴),距离(设置运行距离),F(设置运行的速度)

9.26 非联动缓停

执行到此指令时,做非联动运行的轴设置有效时,缓慢停止运转。

n 1 非联动缓停

标号: 0 X轴: 禁止 Y轴: 禁止

Z轴: 禁止 C轴: 禁止

参数: X 轴 (按"切换"键设置禁止有效), Y 轴 (按"切换"键设置禁止有效), Z 轴 (按"切换"键设置禁止有效), C 轴 (按"切换"键设置禁止有效)

9.27 非联动急停

执行到此指令时,做非联动运动的轴设置有效时,紧急停止运转。

n 1 非联动急停

标号: 0 X轴: 禁止 Y轴: 禁止

Z轴: 禁止 C轴: 禁止

参数: X 轴 (按"切换"键设置禁止有效), Y 轴 (按"切换"键设置禁止有效), Z 轴 (按"切换"键设置禁止有效), C 轴 (按"切换"键设置禁止有效)

9.28 判断完成

执行到此指令,判断非联动运动轴是否停止运动,停止运动跳转到目的标号所在的程序行。

n 1 判断完成标号: 0 轴: X

月的标号: 0

参数:轴(按"切换"键选择判断的轴),目的标号(满足条件,跳转到具有相同标号所在的程序行)

9.29 等待完成

执行到此指令,等待非联动运动轴完成动作,再执行下一条指令。

n 1 等待完成

标号: 0

轴:

X

参数:轴(按"切换"键选择等待的轴)

9.30 插行

在光标所在的程序行前一行插入结束指令。

第10章 启用或退出组态功能

10.1 启用组态功能

首先,已将组态功能通过 U 盘导入控制器中。

其次,登录控制器的组态密码。

第三,将参数-速度参数,〈组态功能〉参数项改为有效,保存参数。

最后, 断电重启。组态功能有效。

10.2 退出组态功能

当前界面为组态功能,按"返回"键,输入组态密码,进入正常界面。不想启用组态功能,将参数-速度参数,〈组态功能〉参数项改为禁止。

附录 电子齿轮设定

电子齿轮是为了让不同的设备有不同的数据单位(单位可以是 mm, 度数, 圈数等),同时,设备实际移动的距离,与控制器上显示的一致。

例如设备要求 X 轴以 mm 为单位, Y 轴以角度为单位,Z 轴以圈数为单位,计算电子齿轮,填写参数保存,分子、分母分别表示进给轴电子齿轮的分子、分母,此数值的取值范围为 $1^{\sim}999999$ 。

电子齿轮分子、分母的确定方法

电子单向转动一轴所需要的脉冲数

电机单向转动一轴所移动的距离(以微米为单位)

将其化简为最减分数,并使分子和分母均为 1^{\sim} 99999 的整数,当有无穷小数时(如 π),可将分子,分母同乘相同数(用计算器多次乘并记住所乘的总值,确定后重新计算以消除计算误差),以使分子、分母略掉的小数影响最小,单分子和分母均应为 1–99999 的整数。

例 1: 丝杠传动:步进电机驱动器细分为一转 5000 步,或伺服驱动器每转 5000 个脉冲,丝杠导程为 6mm,减速比 1:1,即 1.0

$$\begin{array}{ccc}
5000 & \rightarrow & 5 \\
\hline
6 \times 1000 \times 1.0 & \rightarrow & 6
\end{array}$$

即:分子为5,分母为6

例 2: 齿轮齿条: 步进电机驱动器细分为一转 6000 步,或伺服驱动器每转 6000 脉冲,齿轮齿数为 20,模数 2.

则齿轮转一周齿条运动 $20 \times 2 \times \pi$

$$6000 \rightarrow 1 \rightarrow 107$$

 $20 \times 2 \times 3.1415926535898 \times 1000 \rightarrow 20.943951 \rightarrow 2241$

即: 分子为 107, 分母为 2241, 误差为 2241 毫米内差 3 微米 (注意 π 应该足够精确)

例 3: 旋转角度: 步进电机驱动器细分数为一转 5000 步, 或伺服驱动器每转 5000 个脉冲, 减速比为 1:30

$$\begin{array}{ccc}
5000 \times 30 & \longrightarrow & 5 \\
\hline
360 \times 1000 & \longrightarrow & 12
\end{array}$$

即:分子为5,分母为12,所有单位都换算成角度值

例 4:运动圈数:步进电机驱动器细分数为一转 5000 步,或伺服驱动器每转 5000 个脉冲,减速比 1:1

$$\frac{5000}{1 \times 1000} \rightarrow \frac{5}{1}$$

即:分子为5,分母为1,所有的单位都换算成圈数